Awareness Modeling and Computing for Quality-Aware Coordination

Author:

Liu Qing123ORCID,Liu Charles Z.34,Li Lan-lan23ORCID,Gambino Maria T.35

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Department of Information Engineering, Chuzhou Polytechnic, Chuzhou 239000, China

3. Section of Internet of Things and Smart Networks, PSI, SmartSys WorkGroup, AUICS, Sydney 2113, NSW, Australia

4. VISOR, Macquarie University, Sydney 2109, NSW, Australia

5. Macquarie Business School, Macquarie University, Sydney 2109, NSW, Australia

Abstract

In this paper, we address the issues of the trade-off between QoS and QoE with an analytical analysis based on mathematical modeling under a unified normalization measurement. We model through computation the awareness of QoS and QoE with a strategy of quality-aware QoE-QoS coordination. A balanced coordination is proposed using modeling correlations between user experience and service performance. The main contributions of this paper include three main parts. First, a comprehensive mapping is modeled in a close form to illustrate the analytic correlations between QoS, QoE, and data communication. Second, an analytical method to analyze and coordinate the nonlinear trade-off between QoE and QoS is proposed based on the theoretical proof with discussions on necessary-sufficient conditions. Third, an algorithmic framework is provided to perform QoE-QoS coordination based on quality-awareness computing with a test proof. An assessment model for user experience quantification is built with the mean opinion score (MOS) test. Quality-aware QoE and QoS models are built based on the subspace learning strategy. Simulations are given to prove the feasibility and effectiveness of the proposed method. The results show that the operations with the proposed solution can be obtained analytically with balanced efficiency in both user experience performance and network performance.

Funder

Science Foundation of Education Department of Anhui Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3