Influence of Rice Husk Biochar and Its Application Methods on Silicon Dynamics and Rice Yield in Sandy-Loam Soil

Author:

Olanrewaju John S.12ORCID,Sato Kuniaki1,Yamamoto Sadahiro3,Masunaga Tsugiyuki1ORCID

Affiliation:

1. Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan

2. Department of Processing, Storage and Environmental Engineering, National Centre for Agricultural Mechanization, (NCAM), Ilorin, Nigeria

3. Faculty of Agriculture, Tottori University, Tottori, Japan

Abstract

Rice husk biochar (RHB) is a potential source of available silicon in paddy soil and an ecologically responsive soil amendment for sustainable rice production. The study tested the influence of RHB application methods on rice growth, rice yield, and silicon dynamics in sandy loam soil in a pot experiment. RHB was applied at 5 tons ha−1 as a localized-spot-application (LSA) or top-mixed-application (TMA) with the soil at the upper 7 cm or whole-mixed-application (WMA) within 20 cm of the soil column and at 10 tons ha−1 in the TMA and WMA methods and was compared with a control (CTRL) without biochar. Seedlings of the Koshihikari rice variety were transplanted in each pot, and all treatments were replicated thrice. Compared to the CTRL, the LSA and TMA methods did not influence the mean porewater silicon concentration at the vegetative and reproductive stages. However, the WMA method applied at 5 tons ha−1 increased (p<0.05) the mean porewater silicon concentration by 12.3 and 39.5% at the vegetative and reproductive stages, respectively, while at 10 tons ha−1, the respective increase was by 26.1 and 32.7%. All biochar application methods at the 5 tons ha−1 rate increased the rice grain yield (p<0.05) by 21.2% (LSA), 11.3% (TMA), and 47.2% (WMA) compared to the CTRL. Conversely, at 10 tons ha−1, the yield was reduced by 18% in the TMA method, attributable to the immobilization of nitrogen and adsorption of nutrients to biochar surfaces. Our results proved that the choice of biochar application method and rate of application significantly influenced the dissolution of silicon in the porewater, leading to a higher silicon uptake and consequently a higher grain yield. This study provides valuable insights for agricultural practices aiming to enhance silicon dynamics in paddy soil and sustainable rice yield using RHB.

Funder

Japan International Cooperation Agency

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3