Study on Proportion Optimization of Magnesium Oxychloride Cement-Stabilized Clayey Soil Based on the Response Surface Methodology

Author:

Zhang Huzhu1ORCID,Wang Kai1,Hu Bing2,Zheng Yueqing1

Affiliation:

1. School of Traffic Science and Engineering, Jilin Jianzhu University, Changchun, Jilin 130118, China

2. Dongmeng Engineering of CCCC Second Highway Engineering Co.,Ltd, Xian, Shaanxi 710119, China

Abstract

The energy-saving and green environmental protection magnesium oxychloride cement (MOC) is introduced into the pavement base and subbase to improve the shortcomings of CO2 emissions and high industrial energy consumption in the production process of traditional cementitious materials such as lime and Portland cement. Box−Behnken design of design-expert is employed for experiment arrangement, in which MgO/MgCl2 molar ratio, MOC content, and fly ash content are influencing factors, while response values are 7d unconfined compressive strength (USC) and 1d softening coefficient (SC) of solidified soil. The response surface methodology (RSM) is used to optimize the ratio of three additives, and the effects of various factors on the response value are investigated by response surface model analysis and interaction analysis. The results show that the MOC content has the most excellent effect on 7d unconfined compressive strength, and the mutual influence for the MOC content and fly ash content are significant, respectively. However, the influential factor is the fly ash content for the 1d softening coefficient. It is predicted by the RSM analysis that the optimum balance of USC and SC is 8.61 for the MgO/MgCl2 molar ratio, 18% for the MOC content, and 20.36% for the fly ash content. With the additives in the optimal ratio, the actual unconfined compressive strength and softening coefficient of stabilized soil are 2.56 MPa and 0.76, respectively. It is confirmed that the response surface methodology plays an important part in optimizing the proportion of MOC-stabilized clayey soil.

Funder

Education Department of Jilin Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3