Detecting and Measuring Internal Anomalies in Tree Trunks Using Radar Data for Layer Identification

Author:

Xiao Xiayang12ORCID,Wen Jian1ORCID,Xiao Zhongliang1,Li Weilin1

Affiliation:

1. School of Technology, Beijing Forestry University, Key Lab of State Forestry Administration on Forestry Equipment and Automation, Beijing 100083, China

2. Beijing Materials Handling Research Institute Co., LTD, China

Abstract

Radar detection has proven to be an effective, nondestructive test for the determination of the quality of wood-based materials, especially in the wooden structures of ancient buildings and trees. However, the results are usually inaccurate, and it is difficult to interpret internal anomalies due to the moisture content of wood, individual differences, and other factors. In this paper, a new measurement method is proposed based on the use of ground-penetrating radar (GPR) for abnormality localization and imaging. Firstly, the time delay of the reflected signal in the inner trees is analyzed with matched filter and Hilbert detections. Secondly, the two approaches are compared with the use of a forward model, and the Hilbert algorithm is found to be more accurate. Thirdly, a laser scanner is used to collect contour data and determine the location and characteristics of internal tree anomalies. Lastly, the proposed method is tested on ancient willows at the Summer Palace. The results show that the error in the depth and area estimates of the anomalies was within 10% and 5%, respectively. Consequently, the GPR method for locating the anomalies in trees is feasible, and a laser scanner combined with contour data can present the size of the abnormal regions within the trees.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3