Thermal and Mechanical Performance of 3-Phase Polymer Composite Panels for Structural Applications

Author:

Jilani Muhammad Zubair1ORCID,Rehan Zulfiqar Ahmad2ORCID,Ahmad Zuhaib3ORCID,Jabbar Madeha3ORCID,Nawab Yasir3ORCID,Shaker Khubab13ORCID

Affiliation:

1. Department of Materials, School of Engineering & Technology, National Textile University, Faisalabad, Pakistan

2. Department of Chemistry, Sultan Qaboos University, P. O. Box 36, Al Khoud, 123 Muscat, Oman

3. National Center for Composite Materials, School of Engineering & Technology, National Textile University, Faisalabad, Pakistan

Abstract

The objective of this study is to establish a conceptual framework for fiber-reinforced polymer composite (FRPC) panels designed for structural purposes through the incorporation of a third phase (fillers). The present investigation was aimed to design and fabricate 3-phase polymer composite panels that offer enhanced thermal insulation and strength while maintaining low material and labor expenses. Two types of fibrous reinforcements (jute fabric and glass fabric) of different origins were used as reinforcement; polypropylene (PP) was used as the matrix, and microcrystalline cellulose (MCC) was used as particle reinforcement material. The composite materials were fabricated with different MCC concentrations (0, 2 wt%, and 4 wt%), using a hot compression molding technique. It was found that MCC helped to enhance the mechanical performance of the composite panels, while the thermal conductivity showed a slight reduction due to lower concentrations of MCC used. For polypropylene/glass (PPG) composites, thermal conductivity was reduced from 0.214 to 0.193 W/m·K by the addition of 4% MCC fillers. Similarly, for polypropylene/jute (PPJ) composites, it was reduced from 0.14 to 0.126 W/m·K by 4% MCC fillers. The Charpy impact strength of both PPG and PPJ composites was enhanced by the addition of fillers, and the effect was more significant in the case of PPG (increased from 24.83 to 43.98 kJ/m2 for 4% fillers). Cost analysis of the composite panels was also done, showing PPJ panels to be slightly cheaper as compared to PPG. The findings indicate that the developed composite panels have the potential to serve as partitioning as well as the outer shield of the building due to their effective thermal and mechanical properties.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3