Affiliation:
1. Production Technology Department, National Energy Baorixile Energy Co., Ltd., Hulun Buir 021000, Inner Mongolia Autonomous Region, China
2. School of Mines, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
Abstract
This study is aiming at the nonlinear mapping relationship between the groundwater level and its influencing factors. Through the design and calculation process of matlab7 platform, taking the monitoring wells distributed in an open-pit mining area as an example, the short-term prediction of groundwater dynamics in the study area is carried out by using BP neural network model and BP neural network model based on genetic algorithm. Root mean squared error (RMSE), Mean absolute percent-age error (MAPE) and Nash–Sutcliffe efficiency (NSE) are used coefficients,, and the results were compared with BP neural network and stepwise regression model. From the results of the comparative analysis, the genetic algorithm optimized the BP neural network model in the training phase and the test phase, the RMSE was 0.25 and 0.36, the MAPE was 6.7 and 8.13%, and the NSE was 0.87 and 0.72, respectively. The BP neural network model optimized by genetic algorithm is obviously superior to the BP neural network model, which is an ideal prediction model for short-term groundwater level. This model can provide a prediction method for groundwater dynamic prediction and has a good application prospect.
Funder
National Basic Research Program of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献