Identification and Validation of Potential Biomarkers and Pathways for Idiopathic Pulmonary Fibrosis by Comprehensive Bioinformatics Analysis

Author:

Qian Weibin1ORCID,Cai Xinrui2,Qian Qiuhai3,Zhang Xinying3

Affiliation:

1. Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 Shandong, China

2. Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062 Shandong, China

3. Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 Shandong, China

Abstract

Objective. Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible, high-mortality lung disease, but its pathogenesis is still unclear. Our purpose was to explore potential genes and molecular mechanisms underlying IPF. Methods. IPF-related data were obtained from the GSE99621 dataset. Differentially expressed genes (DEGs) were identified between IPF and controls. Their biological functions were analyzed. The relationships between DEGs and microRNAs (miRNAs) were predicted. DEGs and pathways were validated in a microarray dataset. A protein-protein interaction (PPI) network was constructed based on these common DEGs. Western blot was used to validate hub genes in IPF cell models by western blot. Results. DEGs were identified for IPF than controls in the RNA-seq dataset. Functional enrichment analysis showed that these DEGs were mainly enriched in immune and inflammatory response, chemokine-mediated signaling pathway, cell adhesion, and other biological processes. In the miRNA-target network based on RNA-seq dataset, we found several miRNA targets among all DEGs, like RAB11FIP1, TGFBR3, and SPP1. We identified 304 upregulated genes and 282 downregulated genes in IPF compared to controls both in the microarray and RNA-seq datasets. These common DEGs were mainly involved in cell adhesion, extracellular matrix organization, oxidation-reduction process, and lung vasculature development. In the PPI network, 3 upregulated and 4 downregulated genes could be considered hub genes, which were confirmed in the IPF cell models. Conclusion. Our study identified several IPF-related DEGs that could become potential biomarkers for IPF. Large-scale multicentric studies are eagerly needed to confirm the utility of these biomarkers.

Funder

Scientific and Technological Development Program of Jinan

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3