Fabrication of Polycaprolactone/Polyurethane Loading Conjugated Linoleic Acid and Its Antiplatelet Adhesion

Author:

Minh Ho Hieu1,Hiep Nguyen Thi1ORCID,Hai Nguyen Dai23ORCID,Toi Vo Van1

Affiliation:

1. Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University of Vietnam National Universities, Ho Chi Minh City 700000, Vietnam

2. Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh City, Vietnam

3. Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Abstract

Polycaprolactone/polyurethane (PCL/PU) fibrous scaffold was loaded with conjugated linoleic acid (CLA) by electrospinning method to improve the hemocompatibility of the polymeric surface. Fourier Transform Infrared Spectroscopy (FT-IR) analysis and Scanning Electron Microscopy (SEM) observation were employed to characterize the chemical structure and the changing morphology of electrospun PCL/PU and PCL/PU loaded with CLA (PCL/PU-CLA) scaffolds. Platelet adhesion and whole blood clot formation tests were used to evaluate the effect of CLA on antithrombotic property of PCL/PU-CLA scaffold. Endothelial cells (EC) were also seeded on the scaffold to examine the difference in the morphology of EC layer and platelet attachment with and without the presence of CLA. SEM results showed that CLA supported the spreading and proliferation of EC and PCL/PU-CLA surface induced lower platelet adhesion as well as attachment of other blood cells compared to the PCL/PU one. These results suggest that electrospinning method can successfully combine the antiplatelet effects of CLA to improve hemocompatibility of PCL/PU scaffolds for applications in artificial blood vessels.

Funder

Vietnam National University

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3