Metoprolol Mitigates Ischemic Heart Remodeling and Fibrosis by Increasing the Expression of AKAP5 in Ischemic Heart

Author:

Zhu Feng1,Wang Qiushu1,Wang Zhi1,Zhang Xu1,Zhang Benkai1,Wang Hegui1ORCID

Affiliation:

1. Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China

Abstract

The harm of heart failure mainly causes patients to develop dyspnea, fatigue, fluid retention, and other symptoms, which impair patients’ activity tolerance and lead to a dramatic decrease in patients’ quality of life. The purpose of this study was to verify whether metoprolol regulates AKAP5 expression and test the role of AKAP5 postinjury in mitigating cardiac infarction-associated tissue remodeling and fibrosis. Sprague-Dawley (SD) rats underwent coronary artery ligation (CAL), which was followed immediately with metoprolol daily. And western blot and coimmunoprecipitation experiments were performed to detect the expression of related proteins in the sham-operated group, model group, and drug-treated group. HW/BW ratio and cardiac expression of COL1 and COL3 were increased in rats following CAL compared with shams. Treatment with metoprolol postinjury was associated with a decrease in HW/BW ratio and COL1/COL3 expression compared to uncontrolled rats. CAL resulted in decreased cardiac AKAP5 expression compared to the control group, while metoprolol treatment restored levels compared to baseline shams. Cardiac expression levels of NFATc3/p-NFATc3 and GATA4 were modest at baseline and increased with injury, whereas metoprolol suppressed gene expression to below injury-associated changes. Immunoprecipitation indicated that AKAP5 could bind and regulate PP2B. In summary, we know that metoprolol alleviates ischemic cardiac remodeling and fibrosis, and the mechanism of alleviating remodeling may improve cardiac AKAP5 expression and AKAP5-PP2B interaction.

Funder

Key program of the Anhui province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3