Lightweight Photovoltaic Composite Structure on Stratospheric Airships

Author:

Zhang Xinyun1,Sun Kangwen1ORCID,Xu Dongdong1,Guo Shijun2

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

2. School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK

Abstract

A semirigid solar array is an efficient energy system on the surface of stratospheric airships for utilizing the solar energy, which we believe that it has succeeded in providing some impressive results for conceptual design. This paper developed a lightweight photovoltaic composite structure (LPCS) according to the characteristics of the stratospheric airship capsule. In order to improve the flexibility of the solar cell, we studied the mechanical properties in the different thicknesses of the honeycomb core for LPCS by FEM software and three-point bending test, and we also launched experiments to measure the temperature difference between upper and lower surfaces of the LPCS test samples under different solar radiation flux conditions. The experimental data were examined to evaluate the mechanical properties and thermal insulation performances of LPCS. Considering the quality of the whole structure, the paper finally comes up with the conclusion of the optimal thickness of the honeycomb core with further detailed descriptions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3