The Hamiltonian Structure-Preserving Control and Some Applications to Nonlinear Astrodynamics

Author:

Xu Ming1ORCID,Wei Yan1,Liu Shengli2

Affiliation:

1. Department of Aerospace Engineering, School of Astronautics, Beihang University, Beijing 100191, China

2. R. & D. Center, DFH Satellite Co., Ltd., Beijing 100094, China

Abstract

A systematic research on the structure-preserving controller is investigated in this paper, including its applications to the second-order, first-order, time-periodic, or degenerated astrodynamics, respectively. The general form of the controller is deduced for the typical Hamiltonian system in full feedback and position-only feedback modes, which is successful in changing the hyperbolic equilibrium to an elliptic one. With the poles assigned at any different positions on imaginary axis, the controlled Hamiltonian system is Lyapunov stable. The Floquet multiplier is employed to measure the stability of time-dependent Hamiltonian system, because the equilibrium of periodic system may be unstable even though the equilibrium is always elliptic. One type of periodic orbits is achieved by the resonant conditions of control gains, and another type is making judicious choice in the foundational motions with different frequencies. The control gains are selected from the viewpoint of both the local and global optimizations on fuel cost. This controller is applied to some astrodynamics to achieve some interesting conclusions, including stable lissajous orbits in solar sail’s three-body problem and degenerated two-body problem, quasiperiodic formation flying on aJ2-perturbed mean circular orbit, and controlled frozen orbits for a spacecraft with a high area-to-mass ratio.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3