Research on Deep-Site Failure Mechanism of High-Steep Slope under Active Fault Creeping Dislocation

Author:

Liu Yang1ORCID,Zhang Kaiwen1ORCID,Tian Denghang1ORCID,Qu Liming1ORCID,Liu Yang2

Affiliation:

1. MOE Key Laboratory of High-speed Railway Engineering, College of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Zhongke(Hunan) Advanced Rail Transit Research Institute, Zhuzhou 412000, China

Abstract

The reverse thrust in the deep site causes the upward propagation of stress and displacement in the overlying soil. The displacement field around the fault zone is maximum. As the spatial location becomes shallower, the soil displacement gradually becomes smaller. The deformation of the overlying soil is mainly affected by the vertical dislocation of the fracture zone. The monitoring curve showed no abrupt change value, indicating that the top surface of soil did not rupture, and only the influence of fault on the displacement transfer of the top surface of the soil. When a creeping dislocation occurs in the bottom fracture zone, the maximum principal stress of the upper boundary of the deep site is dominated by compressive stress. The maximum principal stress of the soil on both sides of the fracture zone has a maximum value, and the soil on the right side of the fracture zone has a significant compression effect. The maximum principal stress monitoring curve varies greatly, indicating the plastic failure development of soil, which is the same as the research results of the plastic failure zone in the following paper. When the bottom fracture zone starts to move, the plastic zone first appears at the junction area between the front end of the bottom fracture zone and the overlying soil. As the amount of dislocation of the fracture zone increases, the plastic zone continues to extend into the inner soil. The left and right sides of the fracture zone show tensile failure and compression failure, respectively. The development of the upper envelope curve in the plastic zone of the overlying soil satisfies the Boltzmann equation with a first-order exponential growth, while the development of the lower envelope curve satisfies the Gauss equation with a second-order exponential growth. The development curve equation of the plastic zone is verified according to the residual figures of the fitting result and the correlation parameters.

Funder

Science and Technology Research and Development Plan of China National Railway Corporation Limited

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference30 articles.

1. The use of the Slip Circle in the Stability Analysis of Slopes

2. On Pan’s principles of soil and rock stability analysis;Z. Y. Chen;Journal of Tsinghua University (Science and Technology),1998

3. Stability of earth dams upon drawdown;J. Lowe

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3