Predictions of Apoptosis Proteins by Integrating Different Features Based on Improving Pseudo-Position-Specific Scoring Matrix

Author:

Ruan Xiaoli1,Zhou Dongming1ORCID,Nie Rencan1,Guo Yanbu1

Affiliation:

1. School of Information Science and Engineering, Yunnan University, Kunming 650504, China

Abstract

Apoptosis proteins are strongly related to many diseases and play an indispensable role in maintaining the dynamic balance between cell death and division in vivo. Obtaining localization information on apoptosis proteins is necessary in understanding their function. To date, few researchers have focused on the problem of apoptosis data imbalance before classification, while this data imbalance is prone to misclassification. Therefore, in this work, we introduce a method to resolve this problem and to enhance prediction accuracy. Firstly, the features of the protein sequence are captured by combining Improving Pseudo-Position-Specific Scoring Matrix (IM-Psepssm) with the Bidirectional Correlation Coefficient (Bid-CC) algorithm from position-specific scoring matrix. Secondly, different features of fusion and resampling strategies are used to reduce the impact of imbalance on apoptosis protein datasets. Finally, the eigenvector adopts the Support Vector Machine (SVM) to the training classification model, and the prediction accuracy is evaluated by jackknife cross-validation tests. The experimental results indicate that, under the same feature vector, adopting resampling methods remarkably boosts many significant indicators in the unsampling method for predicting the localization of apoptosis proteins in the ZD98, ZW225, and CL317 databases. Additionally, we also present new user-friendly local software for readers to apply; the codes and software can be freely accessed at https://github.com/ruanxiaoli/Im-Psepssm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3