Cross-Platform Drilling 3D Visualization System Based on WebGL

Author:

Liu Shanshan1ORCID,Feng Yueli12ORCID,Wang Xiaoqiu1ORCID,Yan Pengyin1ORCID

Affiliation:

1. College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, China

Abstract

This study develops a novel drilling 3D visualization solution based on WebGL, termed as WebDrillingViz, and introduces the system architecture design and software programming implementation. The software is part of the Engineering Technology Internet of Things (IoT) System, interfacing with other software, and also capable of direct hardware interfacing for data retrieval and system control. It is fully web-based, used real time, and used in RTOC (Real-Time Operating Center) of IoT system, which is a software system for drilling process remote monitor and decision. WebDrillingViz uses the most frontier HTML5 technology to realize a brand-new drilling 3D visualization system. The front end is designed in single-page application (SPA) mode and adopts technologies such as angular, bootstrap, and WebGL. The front-end uses single page application (SPA) mode, Angular, Bootstrap, WebGL and other technologies are used. The back-end data services provide data interface support for front-end visualization applications based on HTTP protocol which uses NodeJS, a lightweight development platform suitable for cloud platform, and Restify to realize a REST JSON API. Both sides are using the same object-oriented oriented development language—TypeScript. The front-end develops an easy-to-extend 3D visualization class library based on WebGL for drilling. It is encapsulated as Angular modularization to form an Angular component, which can be used standalone or integrated into other Angular applications. At the same time, the back-end microservice architecture combined with container and cloud technology is easy to maintain, deploy, and expand and has the advantages of being lightweight, cross-platform, flexible, and efficient. Using HTML5 standard and Bootstrap's responsive layout achieves cross-platform, which can support different operating systems and screen sizes. The system has better robustness and maintainability, thanks to the object-oriented and strong typing characteristics of TypeScript. Practical application shows that WebDrillingViz is efficient, capable of visualization of large drilling 3D scene, and compatible with mainstream devices, such as Windows, Linux, macOS, iOS, and Android. The use of open standards-based modern web technologies and data format enables a more lightweight and economical solution. WebGL, Angular, NodeJS, and TypeScript formed a powerful technology stack, which can be used as an excellent reference for other browser-based visualization development.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Three JS on batik digital museum development;PROCEEDINGS OF THE SYMPOSIUM ON ADVANCE OF SUSTAINABLE ENGINEERING 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3