Affiliation:
1. College of Combat Support, Xi’an Research Institute of High-Tech, Xi’an 710025, China
2. College of Nuclear Engineering, Xi’an Research Institute of High-Tech, Xi’an 710025, China
Abstract
Model predictive control (MPC) has been widely implemented in the motor because of its simple control design and good results. However, MPC relies on the permanent magnet synchronous motor (PMSM) system model. With the operation of the motor, parameter drift will occur due to temperature rise and flux saturation, resulting in model mismatch, which will seriously affect the control accuracy of the motor. This paper proposes a model predictive control based on parameter disturbance compensation that monitors system disturbances caused by motor parameter drift and performs real-time parameter disturbance compensation. And the frequency-domain method was used to analyze the convergence and filterability of the model. The Bode diagram of measurement error and input disturbance was studied when the parameters were underdamped, critically damped, and overdamped. Guidelines for parameter selection are given. Simulation results show that the proposed method has good dynamic performance, anti-interference ability, and parameter robustness, which effectively avoids the current static difference and oscillation problems caused by parameter changes.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献