circ-RANGAP1/MicroRNA-542-3p/Myosin Regulatory Light Chain Interacting Protein Axis Modulates the Osteosarcoma Cell Progression

Author:

Sheng Jundong1,Liu Jin1,Du Junwang2,Wang Yongping3ORCID

Affiliation:

1. Department of Orthopedics, First People’s Hospital of Tianshui, Tianshui, 741000 Gansu, China

2. Department of Anesthesiology, First People’s Hospital of Tianshui, Tianshui, 741000 Gansu, China

3. Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China

Abstract

Objective. This study is aimed at exploring the influence of circular RNA- (circRNA-) RANGAP1 targeting microRNA- (miR-) 542-3p/myosin regulatory light chain interacting protein (MYLIP) on the biological function of osteosarcoma (OS) cells. Methods. Tumor tissues and normal tissues were collected from OS patients and circ-RANGAP1, miR-542-3p, and MYLIP expression was tested by RT-qPCR. The correlation between the clinicopathology/prognosis of patients with OS and circ-RANGAP1 expression was observed. Human OS cell line MG-63 was screened to determine the influences of circ-RANGAP1 and miR-542-3p on OS cell progression. The targeting relation of circ-RANGAP1, miR-542-3p, and MYLIP was probed. Results. circ-RANGAP1 expression was elevated in tumor tissues from OS patients, which was correlated to the poor clinicopathology. circ-RANGAP1 expression was augmented in males or patients younger than 20 years old or patients with advanced OS. Higher circ-RANGAP1 expression indicated a poor prognosis in OS patients. After silencing circ-RANGAP1 or elevating miR-542-3p in MG63 cells, cell progression was limited. miR-542-3p downregulation reduced the therapeutic efficacy of silenced circ-RANGAP1. circ-RANGAP1 bound with miR-542-3p to target MYLIP. Conclusion. Silenced circ-RANGAP1 boosts MYLIP expression via competitive binding of miR-542-3p to facilitate OS cell progression.

Funder

Talent Innovation and Entrepreneurship Project of Lanzhou

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3