Affiliation:
1. School of Transportation Engineering, Southeast University, Nanjing 210096, China
2. Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
Abstract
Herein, we explored the impact of anticipation and asymmetric driving behavior on vehicle’s position, velocity, acceleration, energy consumption, and exhaust emissions of CO, HC, and NOx in mixed traffic flow. We present an asymmetric-anticipation car-following model (AAFVD) considering the motion information from two direct preceding vehicles (i.e., human-driving (HD) and autonomous and connected (AC) vehicles platoon) via wireless data transmission. The linear stability approach was used to evaluate the properties of the AAFVD model. Our simulations revealed that the drivers’ anticipation factor using the motion information from two direct preceding vehicles in connected vehicles environment can effectively improve traffic flow stability. The vehicle’s departure and arrival process while passing through a signal lane with a traffic light considering the anticipation and asymmetric driving behavior, and the motion information from two direct preceding vehicles was explored. Our numerical results demonstrated that the AAFVD model can decrease the velocity fluctuations, energy consumption, and exhaust emissions of vehicles in mixed traffic flow system.
Funder
China Scholarship Council
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献