Affiliation:
1. Bu-Ali Sina University, Hamedan, Iran
2. Laboratory of Earthquake Engineering and Structural Health Monitoring of Infrastructures (LEESHMI), Bu-Ali Sina University, Hamedan, Iran
Abstract
In some cases, impulse- or shock-type excitations as the dynamic loading are inevitable, and obtaining proper response with the well-known numerical methods is not easy. This paper focuses on dynamic response estimation against short-time loading with an updated finite element model using frequency response functions (FRF) and particle swarm optimization (PSO) technique. Because there is not an analytical method for assessing the numerical responses under shock-type excitations, in this paper, experimental tests are designed on a laboratory scale to evaluate the numerical responses. The vibration responses of the system against shock loading are compared with the Newmark average acceleration scheme and also with experimental data. The results reveal that the unconditionally stable Newmark method against regular loads has an appropriate performance. Still, under short-time loading, it faces numerical damping error, and this method should not be blindly applied under shock-type loads.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献