Temporal Description of Annual Temperature and Rainfall in the Bawku Area of Ghana

Author:

Asamoah Yaw1ORCID,Ansah-Mensah Kow2ORCID

Affiliation:

1. Department of Geography Education, University of Education, Winneba, Ghana

2. Department of Geography and Regional Planning, University of Cape Coast, Cape Coast, Ghana

Abstract

With varied implications, Ghana’s temperature and rainfall are projected to rise and decline, respectively. A study exposing specific areas of concern for appropriate responses in this regard is a welcome one. This study sought to describe the temporal variations in temperature and rainfall in the Bawku Area of Ghana. A forty-year (1976–2015) daily climate data was collected on three meteorological stations from the Ghana Meteorological Agency. Normality test, homogeneity test, Standardised Precipitation Index (SPI) analysis, Mann–Kendall trend test, and One-way post hoc ANOVA were performed using XLSTAT and DrinC. Over the period under study, the mean annual rainfall pattern was generally erratic, fluctuating between 669.8 mm and 1339.4.6 mm with an annual average of 935.3 mm. The long-term (40-year period) average temperature of the three stations, on the other hand, was 28.7°C, varying between 26.9°C and 29.9°C annually. Whereas the SPI value of 2006 was ≥2.0, indicating extremely wet year with 2.3% probability of recurring once every 50 years, 1988 was the hottest year with temperature anomaly value of 1.2°C, while coolest years were 1979 (−1.8°C) and 1976 (−1.0°C). The Mann–Kendall trend test showed a rise in rainfall in Binduri, Garu-Tempane, and Manga, yet none of the rainfall changes were statistically significant (P>0.05). Mean temperature on the other hand experienced a significant rise (P<0.05). With an R-square of 34.7%, the rise in temperature in Manga witnessed the most significant change in annual temperature changes. There were statistically significant (P<0.05) differences in the interdecadal temperature over the 40-year period. Generally, it can be stated that both temperature and rainfall vary in the study area with various degrees of disparities, but temperature assumes an upward trend at a faster rate. We therefore recommend that stakeholders resort to the construction of dams and boreholes to ensure regular availability of water for both domestic and agricultural uses.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3