Affiliation:
1. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
Abstract
Efficient temperature control requires more than air temperature measurements. Relevant variables, such as wall, ceiling, and other construction temperature evolution are usually unmeasured. Estimation of such quantities is often difficult because they are not observable with respect to available data. Their availability however would allow efficient control design. In this paper, we propose a method for designing state observers that efficiently estimate not only observable but also nonobservable (but detectable) state variables. Our method uses contraction semigroup, to obtain observer with a monotonic error reduction. Proposed approach gives twice as fast estimation as pure simulation and avoids transitional error standard observer would have. Problem of state estimation in building control applications is an important one. Attractiveness of obtaining values of physically unmeasurable variables is easily visible, as it would allow more efficient methods of temperature control. In this paper, authors discuss the problem of such estimation using a lumped capacitance model. This type of model is usually only detectable but not observable. Methods of observer tuning for such systems are not discussed properly in the literature and require special consideration. In this paper, three approaches for estimation are compared: pure model, eigenvalue shifting, and contraction semigroup observer. Results are illustrated with numerical experiments.
Funder
AGH Subvention for Scientific Research
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献