Observer Design for Estimation of Nonobservable States in Buildings

Author:

Długosz M.1,Baranowski J.1ORCID

Affiliation:

1. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland

Abstract

Efficient temperature control requires more than air temperature measurements. Relevant variables, such as wall, ceiling, and other construction temperature evolution are usually unmeasured. Estimation of such quantities is often difficult because they are not observable with respect to available data. Their availability however would allow efficient control design. In this paper, we propose a method for designing state observers that efficiently estimate not only observable but also nonobservable (but detectable) state variables. Our method uses contraction semigroup, to obtain observer with a monotonic error reduction. Proposed approach gives twice as fast estimation as pure simulation and avoids transitional error standard observer would have. Problem of state estimation in building control applications is an important one. Attractiveness of obtaining values of physically unmeasurable variables is easily visible, as it would allow more efficient methods of temperature control. In this paper, authors discuss the problem of such estimation using a lumped capacitance model. This type of model is usually only detectable but not observable. Methods of observer tuning for such systems are not discussed properly in the literature and require special consideration. In this paper, three approaches for estimation are compared: pure model, eigenvalue shifting, and contraction semigroup observer. Results are illustrated with numerical experiments.

Funder

AGH Subvention for Scientific Research

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Multivariable Control for Dynamic Partially Observable Objects;Advances in Intelligent Systems and Computing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3