The -Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey

Author:

Mainardi Francesco1,Mura Antonio2,Pagnini Gianni3

Affiliation:

1. Department of Physics, University of Bologna and INFN, Via Irnerio 46, 40126 Bologna, Italy

2. CRESME Ricerche S.p.A, Viale Gorizia 25C, 00199 Roma, Italy

3. CRS4, Centro Ricerche Studi Superiori e Sviluppo in Sardegna, Polaris Building 1, 09010 Pula, Italy

Abstract

In the present review we survey the properties of a transcendental function of the Wright type, nowadays known as -Wright function, entering as a probability density in a relevant class of self-similar stochastic processes that we generally refer to as time-fractional diffusion processes. Indeed, the master equations governing these processes generalize the standard diffusion equation by means of time-integral operators interpreted as derivatives of fractional order. When these generalized diffusion processes are properly characterized with stationary increments, the -Wright function is shown to play the same key role as the Gaussian density in the standard and fractional Brownian motions. Furthermore, these processes provide stochastic models suitable for describing phenomena of anomalous diffusion of both slow and fast types.

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mainardi smoothing homotopy method for solving nonlinear optimal control problems;Acta Astronautica;2024-11

2. Mittag-Leffler stability and Lyapunov stability for a problem arising in porous media;Fractional Calculus and Applied Analysis;2024-06-05

3. Singular solutions for space-time fractional equations in a bounded domain;Nonlinear Differential Equations and Applications NoDEA;2024-05-06

4. A direct sampling method for time-fractional diffusion equation;Inverse Problems;2024-05-03

5. Fractional Gamma Noise Functionals;Complex Analysis and Operator Theory;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3