Random Graph-Based M-QAM Classification for MIMO Systems

Author:

Sarfraz Mubashar1,Alam Sheraz1,Ghauri Sajjad A.2,Mahmood Asad3ORCID,Akram M. Nadeem2,Rehman M. Javvad Ur1,Sohail M. Farhan1,Kebedew Teweldebrhan Mezgebo4ORCID

Affiliation:

1. Faculty of Engineering and Computer Science, National University of Modern Languages, Islamabad, Pakistan

2. School of Engineering & Applied Sciences, ISRA University, Islamabad, Pakistan

3. Department of Electrical and Computer Engineering, Comsats University, Islamabad, Wah Campus, Wah Cantt, Pakistan

4. Ethio Telecom, Addis Ababa, Ethiopia

Abstract

Automatic modulation classification (AMC) has been identified to perform a key role to realize technologies such as cognitive radio, dynamic spectrum management, and interference identification that are arguably pivotal to practical SG communication networks. Random graphs (RGs) have been used to better understand graph behavior and to tackle combinatorial challenges in general. In this research article, a novel modulation classifier is presented to recognize M-Quadrature Amplitude Modulation (QAM) signals using random graph theory. The proposed method demonstrates improved recognition rates for multiple-input multiple-output (MIMO) and single-input single-output (SISO) systems. The proposed method has the advantage of not requiring channel/signal to noise ratio estimate or timing/frequency offset correction. Undirected RGs are constructed based on features, which are extracted by taking sparse Fourier transform (SFT) of the received signal. This method is based on the graph representation of the SFT of the 2nd, 4th, and 8th power of the received signal. The simulation results are also compared to existing state-of-the-art methodologies, revealing that the suggested methodology is superior.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3