Quantitative Detection of Gastrointestinal Tumor Markers Using a Machine Learning Algorithm and Multicolor Quantum Dot Biosensor

Author:

Saren Gaowa1ORCID,Zhu Linlin2,Han Yue3

Affiliation:

1. The Department of Medical Nursing, Hulunbuir Vocational Technical College, Hulunbuir 021000, China

2. Department of Pathology, Hulunbeir People’s Hospital, Hulunbuir 021008, China

3. Department of Endoscopy, Hulun Buir Weikang Digestive Hospital, Hulunbuir 021000, China

Abstract

This work was to explore the application value of gastrointestinal tumor markers based on gene feature selection model of principal component analysis (PCA) algorithm and multicolor quantum dots (QDs) immunobiosensor in the detection of gastrointestinal tumors. Based on the PCA method, the neighborhood rough set algorithm was introduced to improve it, and the tumor gene feature selection model (OPCA) was established to analyze its classification accuracy and accuracy. Four kinds of coupled biosensors were fabricated based on QDs, namely, 525 nm Cd Se/Zn S QDs-carbohydrate antigen 125 (QDs525-CA125 McAb), 605 nm Cd Se/Zn S QDs-cancer antigen 19-9 (QDs605-CA19-9 McAb), 645 nm Cd Se/Zn S QDs-anticancer embryonic antigen (QDs 645-CEA McAb), and 565 nm Cd Se/Zn S QDs-anti-alpha-fetoprotein (QDs565-AFP McAb). The quantum dot-antibody conjugates were identified and quantified by fluorescence spectroscopy and ultraviolet absorption spectroscopy. The results showed that the classification precision of OPCA model in colon tumor and gastric cancer datasets was 99.52% and 99.03%, respectively, and the classification accuracy was 94.86% and 94.2%, respectively, which were significantly higher than those of other algorithms. The fluorescence values of AFP McAb, CEA McAb, CA19-9 McAb, and CA125 McAb reached the maximum when the conjugation concentrations were 25 µg/mL, 20 µg/mL, 30 µg/mL, and 30 µg/m, respectively. The highest recovery rate of AFP was 98.51%, and its fluorescence intensity was 35.78 ± 2.99, which was significantly higher than that of other antigens ( P < 0.001 ). In summary, the OPCA model based on PCA algorithm can obtain fewer feature gene sets and improve the accuracy of sample classification. Intelligent immunobiosensors based on machine learning algorithms and QDs have potential application value in gastrointestinal gene feature selection and tumor marker detection, which provides a new idea for clinical diagnosis of gastrointestinal tumors.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis;Biosensors;2023-09-13

2. Photoresponsive Inorganic Nanomaterials in Oncology;Technology in Cancer Research & Treatment;2023-01

3. Oncological Applications of Quantum Machine Learning;Technology in Cancer Research & Treatment;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3