Edge Computing-Enabled Wireless Sensor Networks for Multiple Data Collection Tasks in Smart Agriculture

Author:

Li Xiaomin1ORCID,Zhu Lixue1ORCID,Chu Xuan1,Fu Han2

Affiliation:

1. College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

2. College of Engineering, South China Agricultural University, Guangzhou 510642, China

Abstract

At present, precision agriculture and smart agriculture are the hot topics, which are based on the efficient data collection by using wireless sensor networks (WSNs). However, agricultural WSNs are still facing many challenges such as multitasks, data quality, and latency. In this paper, we propose an efficient solution for multiple data collection tasks exploiting edge computing-enabled wireless sensor networks in smart agriculture. First, a novel data collection framework is presented by merging WSN and edge computing. Second, the data collection process is modeled, including a plurality of sensors and tasks. Next, according to each specific task and correlation between task and sensors, on the edge computing server, a double selecting strategy is established to determine the best node and sensor network that fulfills quality of data and data collection time constraints of tasks. Furthermore, a data collection algorithm is designed, based on set values for quality of data. Finally, a simulation environment is constructed where the proposed strategy is applied, and results are analyzed and compared to the traditional methods. According to the comparison results, the proposal outperforms the traditional methods in metrics.

Funder

Key Area Research and Development Program of Guangdong Province of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3