Hint for a Minimal Interaction Length in e+eγγ Annihilation in Total Cross Section of Center-of-Mass Energies 55-207 GeV

Author:

Chen Yutao1,Liu Minghui1ORCID,Ulbricht Jürgen2

Affiliation:

1. Department of Modern Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China

2. Swiss Institute of Technology ETH Zurich, CH-8093 Zurich, Switzerland

Abstract

The measurements of the total cross section of the e+eγγγ reaction from the VENUS, TOPAS, OPAL, DELPHI, ALEPH, and L3 collaborations, collected between 1989 and 2003, are used to perform a χ2 test to validate the current quantum electrodynamics (QED) theory and search for possible deviations with the direct contact term annihilation. By observing a deviation from the QED predictions on the total cross section of the e+eγγγ reaction above s=180.0 GeV, a non-QED direct contact term is introduced following the dimension 6 effective theory to explain the deviation. In the non-QED direct contact term, a threshold energy scale Λ is included and explained to the finite interaction length in direct contact term and in consequence the size of the electron involved in the annihilation area. The experimental data of the total cross section is compared to the QED cross section by a χ2 test, which gives a best fit of the Λ to be 1576±202 GeV, corresponding to a finite interaction length of re=1.25±0.16×1017 (cm). In the direct contact term annihilation, this interaction length is a measure of the size of an electron re. By combining all the data results from the mentioned collaborations, we have at least 2 to 3 times more statistics than every single experiment at high s region. This induces the best precision on re compared to the previous measurements.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3