Effect of Eccentricity on Breakout Propagation around Noncircular Boreholes

Author:

Bahrehdar Mohammad1ORCID,Lakirouhani Ali1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Iran

Abstract

Investigating the shear failure caused by the concentration of compressive stress around noncircular boreholes is important both in the field and in the laboratory. This article deals with the numerical analysis of elliptical boreholes under a nonisotropic in situ stress field using the Mogi–Coulomb nonlinear failure criterion. The purpose of the presented numerical model is to simulate the progressive shear failure (breakout) around the borehole and investigate the impact of the eccentricity of the borehole on the stability and depth and width of the failure area. According to the obtained results, the breakout is V-shaped and is formed along the minimum principal stress. As the eccentricity of the borehole increases, the final dimension of the breakout becomes smaller; in other words, the increase in ellipticity strengthens the borehole against shear failure. However, as the eccentricity increases, the stress concentration at the breakout tip increases. Another finding of the study conducted in this article is the significant relationship between the width and the depth of the breakout failure, which makes the idea of estimating both horizontal in situ stresses using breakout dimensions seriously doubtful. Also, the interesting result obtained is that the stress concentration factor at the breakout tip for boreholes with different eccentricities is the same at the end of the breakout.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3