Online Data Migration Model and ID3 Algorithm in Sports Competition Action Data Mining Application

Author:

Ju Li1ORCID,Huang Lei2,Tsai Sang-Bing3ORCID

Affiliation:

1. Department of Physical Education, Guangxi Medical University, Nanning, Guangxi, 530000, China

2. Beijing Sport University, Beijing, 100000, China

3. Regional Green Economy Development Research Center, School of Business, WUYI University, China

Abstract

The ID3 algorithm is a key and important method in existing data mining, and its rules are simple and easy to understand and have high application value. If the decision tree algorithm is applied to the online data migration of sports competition actions, it can grasp the sports competition rules in the relationship between massive data to guide sports competition. This paper analyzes the application performance of the traditional ID3 algorithm in online data migration of sports competition actions; realizes the application steps and data processing process of the traditional ID3 algorithm, including original data collection, original data preprocessing, data preparation, constructing a decision tree, data mining, and making a comprehensive evaluation of the traditional ID3 algorithm; and clarifies the problems of the traditional ID3 algorithm. Mainly, the problems of missing attributes and overfitting are clarified, which provide directions for the subsequent algorithm optimization. Then, this paper proposes a k -nearest neighbor-based ID3 optimization algorithm, which selects values similar to k -nearest neighbors to fill in the missing values for the attribute missing problem of the traditional ID3 algorithm. Based on this, the improved algorithm is applied to the online data migration of sports competition actions, and the application effect is evaluated. The results show that the performance of the k -nearest neighbor-based ID3 optimization algorithm is significantly improved, and it can also solve the overfitting problem existing in the traditional ID3 algorithm. For the overall classification problem of six types of samples of travel patterns, the experimental data samples have the characteristics of high data quality, a considerable number of samples, and obvious sample differentiation. Therefore, this paper also uses the deep factorization machine algorithm based on deep learning to classify the six classes of travel patterns of sports competition action data using the previously extracted relevant features. The research in this paper provides a more accurate method and a higher-performance online data migration model for sports competition action data mining.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3