Intelligent Classification Model of Music Emotional Environment Using Convolutional Neural Networks

Author:

Ke Feng1ORCID

Affiliation:

1. The Arts Faculty of North University of China, Taiyuan, Shanxi 030051, China

Abstract

The majority of traditional text sentiment classification techniques rely on machine learning or sentiment dictionaries, but these approaches have the drawback of sparse data and ignore word semantics and word order information. A convolutional neural network- (CNN-) based music emotion classification model is proposed in this paper to address the aforementioned issues. The model in this paper has clear advantages in every way. On the same dataset, the model in this study has an average accuracy of 91.4 percent, while LeNet, AlexNet, and VGGNet have accuracy averages of 75.3 percent, 72.2 percent, and 79.4 percent, respectively. The error value of the other three algorithms is higher than the cost function value because people’s emotions in the cognitive field are divided into different categories. However, in the field of music emotion retrieval, we can only extract the features of the known melody and then search for the same emotion, so we need to build a computerized music emotion classifier if we want to find emotions that are similar to a particular melody. This study examines musical emotion models that already exist, then extracts musical emotion features, and builds a musical emotion classifier using a neural network. The classifier is then further trained until the error classification rate of the training samples is within a certain error range, after which the classification results are marked by pertinent feedback.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference21 articles.

1. Research on music emotion classification based on music content and lyrics[J];X. Shao;Computer Technology and Development,2015

2. Self-Supervised Locality Preserving Low-Pass Graph Convolutional Embedding for Large-Scale Hyperspectral Image Clustering

3. Cloud Shape Classification System Based on Multi-Channel CNN and Improved FDM

4. Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition[J];X. Gu;IEEE Transactions on Computational Social Systems,2022

5. Visual object tracking based on residual network and cascaded correlation filters

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3