Affiliation:
1. Department. of Mathematics, Northern Borders University, Arar 73222, Saudi Arabia
2. Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA
Abstract
We study the Banach space BHα (α>0) of the harmonic mappings h on the open unit disk D satisfying the condition supz∈D(1-z2)α(hzz+hz¯z)<∞, where hz and hz¯ denote the first complex partial derivatives of h. We show that several properties that are valid for the space of analytic functions known as the α-Bloch space extend to BHα. In particular, we prove that for α>0 the mappings in BHα can be characterized in terms of a Lipschitz condition relative to the metric defined by dH,α(z,w)=sup{hz-hw:h∈BHα,hBHα≤1}. When α>1, the harmonic α-Bloch space can be viewed as the harmonic growth space of order α-1, while for 0<α<1, BHα is the space of harmonic mappings that are Lipschitz of order 1-α.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献