Big Data Precision Marketing Approach under IoT Cloud Platform Information Mining

Author:

Li Wang1ORCID

Affiliation:

1. Business School, Xijing University, Xi’an, Shaanxi 710123, China

Abstract

In this article, an in-depth study and analysis of the precision marketing approach are carried out by building an IoT cloud platform and then using the technology of big data information mining. The cloud platform uses the MySQL database combined with the MongoDB database to store the cloud platform data to ensure the correct storage of data as well as to improve the access speed of data. The storage method of IoT temporal data is optimized, and the way of storing data in time slots is used to improve the efficiency of reading large amounts of data. For the scalability of the IoT data storage system, a MongoDB database clustering scheme is designed to ensure the scalability of data storage and disaster recovery capability. The relevant theories of big data marketing are reviewed and analyzed; secondly, based on the relevant theories, combined with the author’s work experience and relevant information, a comprehensive analysis and research on the current situation of big data marketing are conducted, focusing on its macro-, micro-, and industry environment. The service model combines the types of user needs, encapsulates the resources obtained by the alliance through data mining for service products, and publishes and delivers them in the form of data products. From the perspective of the development of the telecommunications industry, in terms of technology, the telecommunications industry has seen the development trend of mobile replacing fixed networks and triple play. The development of emerging technologies represented by the Internet of Things and cloud computing has also led to technological changes in the telecommunications industry. Operators are facing new development opportunities and challenges. It also divides the service mode into self-service and consulting service mode according to the different degrees of users’ cognition and understanding of the service, as well as proposes standardized data mining service guarantee from two aspects: after-sales service and operation supervision. A customized data mining service is a kind of data mining service for users’ personalized needs. And the intelligent data mining service guarantee is proposed from two aspects of multicase experience integration and group intelligence. In the empirical research part, the big data alliance in Big Data Industry Alliance, which provides data mining service as the main business, is selected as the research object, and the data mining service model of the big data alliance proposed in this article is applied to the actual alliance to verify the scientific and rationality of the data mining service model and improve the data mining service model management system.

Funder

Xijing University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-HybridChain: Picturized authentication and DRL based access control method with secure two fold revocation for ensuring cloud computing security;Future Generation Computer Systems;2024-11

2. Future Direction for IoT-Blockchain-Based Marketing;Advances in Marketing, Customer Relationship Management, and E-Services;2024-03-08

3. Efficient approach of high average utility pattern mining with indexed list-based structure in dynamic environments;Information Sciences;2024-02

4. Optimization and Upgrading of Big Data Processing Techniques in High Performance Computing Environments;Applied Mathematics and Nonlinear Sciences;2024-01-01

5. Information Extraction Using Data Mining Techniques For Big Data Processing in Digital Marketing Platforms;2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3