Affiliation:
1. Queen’s University Kingston, ON, Canada T2L 2K7
2. Royal Military College of Canada Kingston, ON, Canada K7K 7B4
Abstract
Indoor navigation is challenging due to unavailability of satellites-based signals indoors. Inertial Navigation Systems (INSs) may be used as standalone navigation indoors. However, INS suffers from growing drifts without bounds due to error accumulation. On the other side, the IEEE 802.11 WLAN (WiFi) is widely adopted which prompted many researchers to use it to provide positioning indoors using fingerprinting. However, due to WiFi signal noise and multipath errors indoors, WiFi positioning is scattered and noisy. To benefit from both WiFi and inertial systems, in this paper, two major techniques are applied. First, a low-cost Reduced Inertial Sensors System (RISS) is integrated with WiFi to smooth the noisy scattered WiFi positioning and reduce RISS drifts. Second, a fast feature reduction technique is applied to fingerprinting to identify the WiFi access points with highest discrepancy power to be used for positioning. The RISS/WiFi system is implemented using a fast version of Mixture Particle Filter for state estimation as nonlinear non-Gaussian filtering algorithm. Real experiments showed that drifts of RISS are greatly reduced and the scattered noisy WiFi positioning is significantly smoothed. The proposed system provides smooth indoor positioning of 1 m accuracy 70% of the time outperforming each system individually.
Subject
General Earth and Planetary Sciences,General Engineering,Instrumentation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献