Utilization of Bioinorganic Nanodrugs and Nanomaterials for the Control of Infectious Diseases Using Deep Learning

Author:

Priyadarshini R.1,Abdullah A. Sheik1,Karthikeyan K. V.2,Vinoth M.3,Martin Betty4,Geerthik S.5,Wilfred Florin6ORCID,Alyami Nour M.7,Sundaram R. S.8

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India

2. Department of Electronics and Communication Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamil Nadu, India

3. Department of Electronics and Communication Engineering, K. Ramakrishnan College of Engineering, Trichy, 621112 Tamil Nadu, India

4. Department of Electronics and Communication Engineering, SASTRA Deemed to be University, Thirumalaisamuthiram, Thanjavur, 613401 Tamil Nadu, India

5. Department of Information Technology, Agni College of Technology, Chennai, 600130 Tamil Nadu, India

6. Department of Electrical, Electronics and Communication Engineering, St. Joseph College of Engineering and Technology, St. Joseph University in Tanzania, Dar es Salaam, Tanzania

7. Department of Zoology, C. Abdul Hakeem College of Engineering, Vellore, 632509 Tamil Nadu, India

8. Department of Health Sciences, University of Texas, Austin, TX, USA

Abstract

As one of the main causes of morbidity and mortality, viral infections have a major impact on the well-being and economics of every nation in the globe. The ability to predictably diagnose viral infections improves the provision of good healthcare as well as the control and prevention of these conditions. Nanomaterials have gained widespread usage in the medical industry recently due to the rapid advancement of nanotechnology and their exceptional chemical and physical qualities, such as their small size and synthesized surface properties. The utilization of nanoparticles for illness detection, surveillance, control, preventive, and therapy, such as the treatment of bacterial infections, is referred to as nanomedicine. Nanomedicine is a comprehensive discipline that is founded on the usage of nanotechnology for clinical objectives. Nanoparticles, which have a nanoscale dimension and exhibit highly controllable optical and physical characteristics as well as the ability to bind to a large variety of chemicals, are among the most popular nanomaterials in nanomedicine. A deep learning framework of autoencoder for categorization study on viral infections is built based on actual hospital patient history of viral infections from August 2015 to August 2020. The information comprises of 10,950 cases, comprising outpatients and inpatients, encompassing the infectious diseases. Of such 10,950 instances, training set made up 70% or 7665 instances, and testing data made up 30% or 3285 instances. The data processing was done using the presented recurrent neural network-artificial bee colony (RNN-ABC) method. Sparse data densifying processes are done through the autoencoder to enhance the system learning outcome. The suggested autoencoder system was also evaluated to other widely used models, including support vector machine, logistic regression, random forest, and Naïve Bayes. In comparison to other approaches, the study’s findings demonstrate how well the suggested autoencoder model can predict viral diseases. The methods used for this research can aid in removing reported lags in current monitoring systems, hence reducing society’s expenses.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3