Utilization of Artificial Neural Network in Predicting the Total Organic Carbon in Devonian Shale Using the Conventional Well Logs and the Spectral Gamma Ray

Author:

Siddig Osama1,Abdulhamid Mahmoud Ahmed1,Elkatatny Salaheldin1ORCID,Soupios Pantelis2

Affiliation:

1. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Box 5049, Saudi Arabia

2. Department of Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Box 5049, Saudi Arabia

Abstract

Due to high oil and gas production and consumption, unconventional reservoirs attracted significant interest. Total organic carbon (TOC) is a significant measure of the quality of unconventional resources. Conventionally, TOC is measured experimentally; however, continuous information about TOC is hard to obtain due to the samples’ limitations, while the developed empirical correlations for TOC were found to have modest accuracy when applied in different datasets. In this paper, data from Devonian Duvernay shale were used to develop an optimized empirical correlation to predict TOC based on an artificial neural network (ANN). Three wells’ datasets were used to build and validate the model containing over 1250 data points, and each data point includes values for TOC, density, porosity, resistivity, gamma ray and sonic transient time, and spectral gamma ray. The three datasets were used separately for training, testing, and validation. The results of the developed correlation were compared with three available models. A sensitivity and optimization test was performed to reach the best model in terms of average absolute percentage error (AAPE) and correlation coefficient (R) between the actual and predicted TOC. The new correlation yielded an excellent match with the actual TOC values with R values above 0.93 and AAPE values lower than 14%. In the validation dataset, the correlation outperformed the other empirical correlations and resulted in less than 10% AAPE, in comparison with over 20% AAPE in other models. These results imply the applicability of this correlation; therefore, all the correlation’s parameters are reported to allow its use on different datasets.

Funder

King Fahd University of Petroleum and Minerals

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3