Research of Mechanical Resonance Analysis and Suppression Control Method of the Servo Drive System

Author:

Li Wenli1,Liu Yongkang1ORCID,Ge Shuaishuai1ORCID,Liao Daming2

Affiliation:

1. Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chong-qing University of Technology, Chongqing 400054, China

2. Chongqing University of Technology & Tsinghua Automative Research Institute and Linktron Measurement and Control Techology Co., Ltd, Chongqing 400054, China

Abstract

Transmission mechanisms of the servo drive system are not a pure rigid body, and the existence of the elastic transmission mechanisms will make the system generate mechanical resonance. Aiming at mechanical resonance of the servo drive system, the resonance generation mechanism is analyzed, the four-mass model considering the time-varying meshing stiffness of the gear is established, and the influence of different stiffness parameters on the mechanical resonance of the system is researched in this paper. The composite controller of Model Predictive Control (MPC) with Notch Filter is used to simulate the mechanical resonance suppression of the four-mass servo system considering time-varying meshing stiffness, and it is compared with the mechanical resonance suppression method based on Model Predictive Control. The simulation results show that when the step speed is 200 r/min, the overshoot is reduced from 11.6 r/min to 1.1 r/min, which is reduced by 90.5%. Under the impact load condition, from 10 Nm to 30 Nm, overshoot is reduced from 34.3 r/min to 12.8 r/min, reduced by 62%, and torque oscillation is reduced by 81.5%. Therefore, the composite controller of Model Predictive Control with Notch Filter can suppress the mechanical resonance problem effectively, caused by elastic transmission, and improve the robustness of servo drive system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3