Deep Forest-Based Fault Diagnosis Method for Chemical Process

Author:

Ding Jiaman1ORCID,Luo Qingbo1ORCID,Jia Lianyin1ORCID,You Jinguo1ORCID

Affiliation:

1. Kunming University of Science and Technology, Artificial Intelligence Key Laboratory of Yunnan Province, Kunming, 650500 Yunnan, China

Abstract

With the rapid expanding of big data in all domains, data-driven and deep learning-based fault diagnosis methods in chemical industry have become a major research topic in recent years. In addition to a deep neural network, deep forest also provides a new idea for deep representation learning and overcomes the shortcomings of a deep neural network such as strong parameter dependence and large training cost. However, the ability of each base classifier is not taken into account in the standard cascade forest, which may lead to its indistinct discrimination. In this paper, a multigrained scanning-based weighted cascade forest (WCForest) is proposed and has been applied to fault diagnosis in chemical processes. In view of the high-dimensional nonlinear data in the process of chemical industry, WCForest first designs a set of relatively suitable windows for the multigrained scan strategy to learn its data representation. Next, considering the fitting quality of each forest classifier, a weighting strategy is proposed to calculate the weight of each forest in the cascade structure without additional calculation cost, so as to improve the overall performance of the model. In order to prove the effectiveness of WCForest, its application has been carried out in the benchmark Tennessee Eastman (TE) process. Experiments demonstrate that WCForest achieves better results than other related approaches across various evaluation metrics.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3