Numerical Simulation of Palm Biodiesel Droplet Evaporation at Various Temperatures and Pressures

Author:

Amsal Mohamed1ORCID,Tran Manh-Vu1ORCID,Hung Yew Mun1ORCID,Scribano Gianfranco2ORCID,Chong Cheng Tung3ORCID

Affiliation:

1. School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia

2. Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia

3. China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai 201306, China

Abstract

This study uses numerical simulations to determine the evaporation characteristics of palm biodiesel droplets under normal gravity at temperatures ranging from 473 to 873 K and pressures ranging from 0.2 to 5 bar. A transient, two-phase, axisymmetric volume of fluid (VOF) model is employed to model transport processes across phases. The palm methyl ester is modelled as a single-component fuel with temperature- and pressure-dependent thermophysical properties. The study compares the obtained evaporation rates with those available in the literature and presents the effects of external parameters in experimental setups. Additionally, the study investigates the effects of changing the oxygen/nitrogen composition of the environment at elevated temperatures. The results show that elevated temperatures enhance the evaporation rate at all pressures and oxygen contents due to significantly enhanced thermal conductivity and droplet surface temperatures, while elevated pressures decrease the evaporation rates. Across the pressure range, evaporation rates decrease by 219%, 213%, and 196% for temperatures of 473, 673, and 873 K, respectively. Furthermore, increasing oxygen concentration in the environment can also increase the evaporation rate; however, the effect is less noticeable with a 6.4% increase at 473 K and more significant with a 27.8% increase at 873 K across the selected oxygen composition range.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3