QoE-Driven, Energy-Aware Video Adaptation in 5G Networks: The SELFNET Self-Optimisation Use Case

Author:

Nightingale James1,Wang Qi1,Alcaraz Calero Jose M.1,Chirivella-Perez Enrique1ORCID,Ulbricht Marian2ORCID,Alonso-López Jesús A.3ORCID,Preto Ricardo4,Batista Tiago4ORCID,Teixeira Tiago4,Barros Maria Joao5ORCID,Reinsch Christiane5

Affiliation:

1. Artificial Intelligence, Visual Communications and Networks Research Centre, School of Engineering & Computing, University of the West of Scotland, Paisley PA1 2BE, UK

2. InnoRoute GmbH, Marsstraße 14a, 80335 Munich, Germany

3. Alvarion, 48091 Tel Aviv, Israel

4. Ubiwhere, 3800-012 Aveiro, Portugal

5. Eurescom Gmbh, 69123 Heidelberg, Germany

Abstract

Sharp increase of video traffic is expected to account for the majority of traffic in future 5G networks. This paper introduces the SELFNET 5G project and describes the video streaming use case that will be used to demonstrate the self-optimising capabilities of SELFNET's autonomic network management framework. SELFNET's framework will provide an advanced self-organizing network (SON) underpinned by seamless integration of Software Defined Networking (SDN), Network Function Virtualization (NFV), and network intelligence. The self-optimisation video streaming use case is going beyond traditional quality of service approaches to network management. A set of monitoring and analysis components will facilitate a user-oriented, quality of experience (QoE) and energy-aware approach. Firstly, novel SON-Sensors will monitor both traditional network state metrics and new video and energy related metrics. The combination of these low level metrics provides highly innovative health of network (HoN) composite metrics. HoN composite metrics are processed via autonomous decisions not only maintaining but also proactively optimising users' video QoE while minimising the end-to-end energy consumption of the 5G network. This contribution provided a detailed technical overview of this ambitious use case.

Funder

European Commission Horizon 2020 5G-PPP Programme

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3