Adhesion Mechanism of Water Droplets on Hierarchically Rough Superhydrophobic Rose Petal Surface

Author:

Teisala Hannu1ORCID,Tuominen Mikko1,Kuusipalo Jurkka1

Affiliation:

1. Paper Converting and Packaging Technology, Department of Energy and Process Engineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland

Abstract

Extremely hydrophobic surfaces, on which water droplets sit in a spherical shape leaving air entrapped into the roughness of the solid, are often called superhydrophobic. Hierarchically rough superhydrophobic surfaces that possess submicron scale fine structures combined with micron scale structures are generally more hydrophobic, and water droplet adhesion to those surfaces is lower in comparison with surfaces possessing purely micrometric structures. In other words, usually a fine structure on a superhydrophobic surface reduces liquid-solid contact area and water droplet adhesion. Here we show that this does not apply to a high-adhesive superhydrophobic rose petal surface. Contrary to the present knowledge, the function of the fine structure on the petal surface is to build up the high adhesion to water droplets. Understanding of the specific adhesion mechanism on the rose petal gives insight into an interesting natural phenomenon of simultaneous superhydrophobicity and high water droplet adhesion, but, in addition, it contributes to more precise comprehension of wetting and adhesion mechanisms of superhydrophobic surfaces overall.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3