Electromechanical Performance Analysis of the Hybrid Piezoelectric-Electromagnetic Energy Harvester under Rotary Magnetic Plucking Excitation

Author:

Wang Hongyan1ORCID,Hu Jiarui1,Sun Gang1,Zou Liying2

Affiliation:

1. College of Mechatronic Engineering, Qiqihar University, Qiqihar 161006, China

2. College of Communication and Electronics Engineering, Qiqihar University, Qiqihar 161006, China

Abstract

This paper presents an analysis of the hybrid piezoelectric-electromagnetic energy harvester (P-EMEH) driven by contactless rotary magnetic plucking. A lumped-parameter model of the hybrid P-EMEH is developed, and the model parameters are determined from the finite element analysis (FEA) method. A parametric study is conducted to investigate the effects of driving force parameters, load resistance, and electromechanical coupling strengths (EMCSs) on the maximal displacements and velocities, average power inputs and outputs, and energy efficiencies of the system for indicating the performance of the hybrid P-EMEH. The results show that the hybrid P-EMEH can obtain the improved power inputs by reducing the gyration radii of the rotary magnet and shortening the gaps between the two magnets. The structural vibrations can be strongly suppressed owing to the optimal piezoelectric power outputs, which can lead to the occurrence of valleys’ power of the electromagnetic element. At weak coupling, the hybrid P-EMEH can achieve higher power outputs than the single piezoelectric energy harvester (PEH) and the single electromagnetic energy harvester (EMEH). At strong coupling, the use of the PEH is more advantageous for energy harvesting due to wider power bandwidths at high dimensionless frequencies when compared with the hybrid P-EMEH. This work provides a fundamental understanding on the effect of load resistance and EMCSs on the dynamic and electrical characteristics of the magnetically plucked hybrid P-EMEH.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3