Effect of Bidirectional Ground Motion on the Response of Double Concave Friction Pendulum Systems

Author:

Li JiaxiORCID,Tan PingORCID,Yang KuiORCID,Zheng HaowenORCID,Yamazaki ShinsukeORCID,Kishiki ShoichiORCID

Abstract

Recent destructions of structures due to insufficient isolator deformation capacity have led to demands for greater seismic redundancy in seismic isolation design. For a friction pendulum system (FPS), the effect of bidirectional behavior of earthquakes on the maximum response and its effect on friction heating, temperature, and in turn on the maximum response can be significant. However, the extent of these effects under different FPS design parameters and different types of ground motions (GMs) is still not clear. In this study, an analytical model of double concave FPS considering the coupling effect of friction heating and bidirectional behavior was proposed and validated by bidirectional earthquake response orbits, which reflect the characteristics of both GMs and FPSs. Then, the effects of bidirectional GM and corresponding bidirectional temperature change on the response were investigated under different types of strong GMs. Finally, a performance‐based design method with a bidirectional‐effect‐compensation mechanism was proposed. For double concave friction pendulum bearings with PTFE‐related layers, it was found that the bidirectional behavior of earthquakes will amplify the maximum isolator displacement by an average of 110–210% (60 MPa) and the maximum superstructure acceleration by an average of 100–140% (60 MPa) under strong GMs (PGV‐C1 > 0.2 m/s) and optimum design parameters. The amplification ratio is not only influenced by GM characteristics but also highly related to the design parameters and friction‐heating effect of DCFPS.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Program for Changjiang Scholars and Innovative Research Team in University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3