Study on the Processing Technology of Calamine Calcination by Near-Infrared Spectroscopy

Author:

Zhang Xiaodong1ORCID,Chen Long2ORCID,Bai Yu3,Chen Keli1ORCID

Affiliation:

1. Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription & Hubei University of Chinese Medicine, Wuhan 430065, China

2. Xiangyang Central Hospital, Xiangyang, Hubei 441500, China

3. Mayinglong Pharmaceutical Group Co., Wuhan 430065, China

Abstract

Near-infrared spectroscopy has been widely used in qualitative and quantitative analysis and online monitoring in the production process of traditional Chinese medicines. The aim was to establish a fast determination model of zinc oxide (ZnO) content in calcined calamine and to explore methods through judging the end point of calamine calcination. Eight batches of calamine samples sourced from hydrozincite with different sizes and textures were calcined at different temperatures. During the calcination process, ZnO contents, X-ray diffraction (XRD) patterns, and near-infrared spectra of the samples were used to analyze their changes rules. The model of determining ZnO content of calcined calamine was established to use near-infrared spectroscopy based on the partial least squares (PLS) regression algorithm. In addition, this paper summarized the change rules of calamine in calcination according to XRD patterns, using the “K value” quantitative method to define the characteristic T value. When the T value was equal to 1.00 (100%), that is to say, the calamine sample was completely calcined. Then, matching the near-infrared spectroscopy data with the T value and establishing the T value analysis model using the PLS algorithm were performed. Through cross and independent validation and evaluation, it was proved that the two models were very effective and had strong predictive abilities. Finally, the purpose of the online monitoring of the calcination process and controlling the quality of the calcined calamine was achieved.

Funder

National Development and Reform Commission

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3