Multifocus Image Fusion Using Biogeography-Based Optimization

Author:

Zhang Ping1,Fei Chun2,Peng Zhenming1,Li Jianping2,Fan Hongyi3

Affiliation:

1. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 611731, China

2. School of Computer Science & Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

3. School of Engineering, Brown University, Providence, RI 02912, USA

Abstract

For multifocus image fusion in spatial domain, sharper blocks from different source images are selected to fuse a new image. Block size significantly affects the fusion results and a fixed block size is not applicable in various multifocus images. In this paper, a novel multifocus image fusion algorithm using biogeography-based optimization is proposed to obtain the optimal block size. The sharper blocks of each source image are first selected by sum modified Laplacian and morphological filter to contain an initial fused image. Then, the proposed algorithm uses the migration and mutation operation of biogeography-based optimization to search the optimal block size according to the fitness function in respect of spatial frequency. The chaotic search is adopted during iteration to improve optimization precision. The final fused image is constructed based on the optimal block size. Experimental results demonstrate that the proposed algorithm has good quantitative and visual evaluations.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving evolutionary optimization with metamodel-based operators;11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES;2023

2. Multifocus Color Image Fusion Based on NSST and PCNN;Journal of Sensors;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3