Deformation Analysis and Research of Building Envelope by Deep Learning Technology under the Reinforcement of the Diaphragm Wall

Author:

Wang Lijuan1,Zhao Qihua1ORCID

Affiliation:

1. State Key Laboratory of GeoHazard Prevention and GeoEnvironment Protection, Chengdu University of Technology, Chengdu 610059, China

Abstract

The safety analysis of underground buildings is the most crucial problem in the construction industry. This work aims to optimize the safety analysis results of the underground building envelope and comprehensively improve the safety of the underground building. Long short-term memory (LSTM) can make long-term and short-term predictions, thus reducing the model’s prediction error. Applying it to the deformation analysis, data prediction of the underground building envelope can improve the accuracy of the deformation prediction of the envelope. This work deeply discusses deep learning technology and the principle of the LSTM model. Based on the safety analysis concept of the underground building envelope, LSTM underground building envelope deformation’s prediction model is established and comprehensively evaluated. The results show that in the prediction of horizontal displacement of foundation pit pile of diaphragm wall, the mean relative error (MRE) of the prediction results of the designed model range in 10%–18%, and the calculation time ranges 15–36 s. In the settlement displacement prediction, the model’s MRE is within the range of 5%–7%, and the calculation time is within the range of 17–40 s. With the increase of training times, the prediction accuracy of the model increases, and the calculation time becomes relatively stable. Compared with other models, the relative error of prediction results is about 5.4% at the highest and 1.8% at the lowest. This work provides technical support for improving the safety prediction accuracy of the underground building envelope and provides some reference value for the comprehensive development of the underground building industry.

Funder

National Nature Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3