Discontinuous Track Recognition System Based on PolyLaneNet for Darwin-op2 Robot

Author:

Wu Xi-Bao1,Lv Si-Chuan1,Wang Xiao-Hao1,Zhang Shi-Zhuo1,Liu Qiong1,Wang Yi-Qun1ORCID,Chen Wen-bai1ORCID

Affiliation:

1. School of Automation, Beijing Information Science and Technology University, Beijing, China

Abstract

This paper proposes and demonstrates a single-line discontinuous track recognition system by associating the track recognition problem of a humanoid robot with the lane detection problem. The proposal enables the robot to achieve stable running on the single-line discontinuous track. The system consists of two parts: the robot end and the graphics computing end. The robot end is responsible for collecting track information and the graphics computing end is responsible for high-performance computing. These two parts use the TCP for communication. The graphics computing side uses PolyLaneNet lane detection algorithm to train the track image captured from the first perspective of the darwin-op2 robot as the data set. In the inference, the robot end sends the collected tracking images to the graphics calculation end and uses the graphics processor to accelerate the calculation. After obtaining the motion vector, it is transmitted back to the robot end. The robot end parses the motion vector to obtain the motion information of the robot so that the robot can achieve stable running on the single-line discontinuous track. The proposed system realizes the direct recognition of the first perspective image of the robot and avoids the problems of poor stability, inability of identifying curves and discontinuous lines, and other problems in the traditional line detection method. At the same time, this system adopts the method of cooperative work between the PC side and the robot by deploying the algorithm with high computational requirements on the PC side. The data transmission is carried out by stable TCP communication, which makes it possible for the robot equipped with weak computational controllers to use deep-learning-related algorithms. It also provides ideas and solutions for deploying deep-learning-related algorithms on similar low computational robots.

Funder

Beijing Natural Science Foundation

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3