Adaptive Joint Lossy Source-Channel Coding for Multihop IoT Networks

Author:

Ez-zazi Imad1ORCID,Arioua Mounir2,El Oualkadi Ahmed2

Affiliation:

1. National School of Applied Sciences, Sidi Mohamed Ben Abdellah University, Fez BP 72, Morocco

2. National School of Applied Sciences, Abdelmalek Essaadi University, Tangier BP 1818, Morocco

Abstract

We consider monitoring applications in multihop wireless sensor networks (WSNs), where nodes rely on limited batteries so that energy efficiency and reliability are of paramount importance. Typically, lossy compression is aimed at saving transmission energy, yet affects the quality of transmitted data over lossy channels. Accordingly, using error correction coding (ECC) along with compression is required to guarantee both energy efficiency and high-fidelity reconstruction. In this paper, we analyze the energy efficiency of the joint use of lossy compression along with ECC, with the twofold objective of extending the network lifetime and assuring reliability. Specifically, we consider an adaptive joint lossy source-channel coding (JLSCC) system, where the energy efficiency and reliability performances depend on both the compression and the coding rates. Therein, we first carry out a performance analysis of JLSCC, considering realistic models of communication and computational energies, when the communication is performed over a Rayleigh fading channel. Then, we evaluate the performance of the JLSCC system compared to lossy compression and ECC systems in both end-to-end and multihop communications. Our results reveal that an adaptive JLSCC results in substantial energy saving while guaranteeing the required reliability performance, compared to both lossy compression and channel coding systems, that cannot be efficient for both energy and reliability. Instead, the JLSCC system is proved to be energy efficient for small distance end-to-end communication and large-scale multihop network, while leading to satisfactory reliability performance.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3