An Improved Grasshopper Optimizer for Global Tasks

Author:

Zhou Hanfeng1,Ding Zewei1,Peng Hongxin1,Tang Zitao1,Liang Guoxi2ORCID,Chen Huiling1ORCID,Ma Chao3,Wang Mingjing4

Affiliation:

1. College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China

2. Department of Information Technology, Wenzhou Polytechnic, Wenzhou 325035, China

3. School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen 518172, China

4. Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

Abstract

The grasshopper optimization algorithm (GOA) is a metaheuristic algorithm that mathematically models and simulates the behavior of the grasshopper swarm. Based on its flexible, adaptive search system, the innovative algorithm has an excellent potential to resolve optimization problems. This paper introduces an enhanced GOA, which overcomes the deficiencies in convergence speed and precision of the initial GOA. The improved algorithm is named MOLGOA, which combines various optimization strategies. Firstly, a probabilistic mutation mechanism is introduced into the basic GOA, which makes full use of the strong searchability of Cauchy mutation and the diversity of genetic mutation. Then, the effective factors of grasshopper swarm are strengthened by an orthogonal learning mechanism to improve the convergence speed of the algorithm. Moreover, the application of probability in this paper greatly balances the advantages of each strategy and improves the comprehensive ability of the original GOA. Note that several representative benchmark functions are used to evaluate and validate the proposed MOLGOA. Experimental results demonstrate the superiority of MOLGOA over other well-known methods both on the unconstrained problems and constrained engineering design problems.

Funder

Department of Education of Zhejiang Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3