Applications of Fractional Lower Order Synchrosqueezing Transform Time Frequency Technology to Machine Fault Diagnosis

Author:

Wang Haibin1ORCID,Long Junbo2ORCID

Affiliation:

1. College of Information Science and Engineering Technology, Jiujiang University, Jiujiang, China

2. College of Electronics and Engineering, Jiujiang University, Jiujiang, China

Abstract

Synchrosqueezing transform (SST) is a high resolution time frequency representation technology for nonstationary signal analysis. The short time Fourier transform-based synchrosqueezing transform (FSST) and the S transform-based synchrosqueezing transform (SSST) time frequency methods are effective tools for bearing fault signal analysis. The fault signals belong to a non-Gaussian and nonstationary alpha (α) stable distribution with 1<α<2 and even the noises being also α stable distribution. The conventional FSST and SSST methods degenerate and even fail under α stable distribution noisy environment. Motivated by the fact that fractional low order STFT and fractional low order S-transform work better than the traditional STFT and S-transform methods under α stable distribution noise environment, we propose in this paper the fractional lower order FSST (FLOFSST) and the fractional lower order SSST (FLOSSST). In addition, we derive the corresponding inverse FLOSST and inverse FLOSSST. The simulation results show that both FLOFSST and FLOSSST perform better than the conventional FSSST and SSST under α stable distribution noise in instantaneous frequency estimation and signal reconstruction. Finally, FLOFSST and FLOSSST are applied to analyze the time frequency distribution of the outer race fault signal. Our results show that FLOFSST and FLOSSST extract the fault features well under symmetric stable (SαS) distribution noise.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3