Low-Rank Tensor Patching Based on Convolutional Sparse Coding for Communication Data Repair

Author:

Hu Yi1ORCID,Yao Yuyi2ORCID,Cheng Zhen3ORCID

Affiliation:

1. School of Engineering, The University of Western Austria, Harbin 150000, China

2. School of Science, Wuhan University of Technology, Wuhan 430070, China

3. Faculty of Information Science and Engineering, Ocean University of China, Tsingtao 266100, China

Abstract

The study aimed to solve the common problem that hardware limitations and degradation make the data obtained in reality usually incomplete and improve the quality of communication transmission. In this paper, we propose a new low-rank tensor complementation model LRTC-CSC, which is based on tensor kernel parametrization (TNN), preserves the low-rank structure of information while restoring the detail features, and finally solves the problem using the efficient alternating direction multiplier method (ADMM). Based on the low-rank nature of the tensor, adding convolutional sparse coding (CSC) can well represent the characteristics of the high-frequency part of the information to handle the details while recovering the global information. The experimental results show that the training set of this paper saves much time compared with other models in several metrics by using only ten images of similar color for each data. At the same time, the data recovery effect is much higher than the novel TV canonical prior. In particular, the LRTC-CSC model is 5.18 dB higher than the LRTC-TV model in terms of PSNR value for image recovery at a 70% missing rate. The LRTC-CSC model proposed in this paper is more accurate and efficient for communication data restoration.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference48 articles.

1. XuW.Research on Low-Rank Tensor-Complete Models and Algorithms2020Sichuan, ChinaUniversity of Electronic Science and Technology

2. Missing data in primary care research: importance, implications and approaches

3. Copula-based regression models with data missing at random

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3