Heat Transfer and Thermal Deformation Characteristics of Liquid-Cooled Laser Mirror

Author:

Hu Panpan1,Zhu Haihong1,He Chongwen1,Ren Xiaoming2

Affiliation:

1. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

2. The 718th Research Institute of China Shipbuilding Industry Corporation, Handan 056027, China

Abstract

A coupled finite volume-element method is developed to simulate the transient thermal deformation of water-cooled mirror by considering fluid flow and convective heat transfer. The simulation process consists of two steps: the 3D finite volume models of fluid flow and heat transfer equation are solved to obtain the time-dependent temperature field by using CFD; then, the obtained temperature field used as final temperature field is unidirectionally coupled to the finite element model for solving the thermoplastic equation. It is concluded that fluid flow not only affects the magnitude of temperature rise and thermal deformation, but also affects the distribution of temperature and thermal deformation. The temperature gradient in the thickness direction ( z direction) is found to be much larger than that in transverse direction. It is found that the temperature and the consequent deformation of water-cooled mirror increase significantly in the first seconds and gradually become steady state in the subsequent time. Experiments are conducted to estimate the precision of numerical models, and the experimental results agree well with the simulated results.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3