Statistical Estimation of Blast Fragmentation by Applying 3D Laser Scanning to Muck Pile

Author:

Liu Qiang1ORCID,Shi Fuqiang1,Wang Xuguang12,Zhao Mingsheng2

Affiliation:

1. Southwestern JiaoTong University, Chengdu 430070, China

2. Poly Xinlian Blasting Engineering Group. Co., Ltd, Guiyang 550002, China

Abstract

Run-of-mine fragmentation is an important aspect of mine productivity optimization, as it affects all mine-to-mill processes. The current blasting fragmentation calculation methods do not consider the 3D geometric information. Therefore, their calculation results are imprecise. 3D laser scanning is a technique for extracting the 3D geometric information of an object by constructing a 3D point cloud model, with which extra information on the geometrical characteristics of an object could be captured than with the technique of 2D image processing. In this paper, 3D laser scanning technology was utilized for the calculation of the rock blocks on the surface of a muck pile, and the information about the surface blocks was utilized as the samples for the statistical estimation of blasting fragmentation of muck pile (BFMP). Monte Carlo simulation was utilized as the statistical estimation method for the BFMP. In the lab experiment, results from 2D image processing technique and from 3D laser scanning technique combined with statistical estimate were compared with the physical measurements utilizing a water tank, which show that results with 3D laser scanning are more similar to the physical measurement. Finally, the applicability of 3D laser scanning technology combined with statistical methods to the calculation of blast fragmentation was estimated through field tests in Biesikuduke and Santanghu mine, two open-pit coal mines in Xinjiang Province of western China. Results show that the accuracy of the statistical estimation results of BFMP has a particle size deviation of 1–3 cm.

Funder

Guizhou Science and Technology Department

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference29 articles.

1. The mean diameter of the fragments formed by blasting rock

2. Prediction of blasting-induced fragmentation in Meydook copper mine using empirical, statistical, and mutual information models

3. Numerical investigation of blast-induced rock fragmentation

4. Theoretical research of the effect on blasting fragmentation distribution from the explosive specific change;L. Hui;Explosive and Shock,1997

5. Study on blast fragmentation for jointed and fractured rock mass considering collision;Z. Xiantang;Chinese Journal of Rock Mechanics and Engineering,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3